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Conclusions

• Not all points along a titration yield insight 
into the binding interaction occurring.

• We have mathematically derived a novel way 
of constructing titrations so that the binding 
isotherm exhibits maximum sensitivity.

• Computational studies suggest this technique 
should reduce the amount of error in the 
calculated binding constant.

• Analyses following the new protocol should 
increase reliable information regarding 
solution-phase chemical equilibria.
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Introduction

• Binding constants are crucial numbers for 
many areas of chemistry.

• Applications in self-assembly: molecular 
fabrication of nanostructures.

• UV-vis titrations provide an inexpensive 
way to probe solution binding behavior.

• However, the existing literature does not 
provide guidelines for designing effective 
titrations regardless of the size of the 
binding constant.

• This work derives new formulas for helping 
chemists to design optimally-accurate 
titrations for 1:1 equilibrium systems.

The Binding Isotherm

• This plot shows how 1:1 equilibrium 
complexes are formed as the analyte (host) is 
titrated with guest molecules.
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Figure 2: Binding isotherms for varying binding 
regime strengths (as quantified by K[H]o).

Figure 1: Example spectrophotometric titration data.

C
Mild Error Harsh Error

Control Envelope Telescope Control Envelope Telescope

0.5 3.6 × 104 4.8 × 104 4.8 × 104 5.3 × 103 6.9 × 103 6.9 × 103

0.25 2.8 × 104 8.3 × 104 8.3 × 104 5.3 × 103 1.2 × 104 9.1 × 103

0.1 3.6 × 104 1.5 × 105 1.5 × 105 5.3 × 103 1.2 × 104 1.6 × 104

0.01 3.6 × 104 4.4 × 102 3.3 × 105 5.3 × 103 83 2.1 × 104

0 3.6 × 104 1.9 × 102 5.8 × 105 5.3 × 103 63 2.8 × 104

Results and Discussion

Mathematical Derivation

• Starting with a reparameterized form of the 
1:1 equilibrium constant expression, the mole 
fraction of the 1:1 complex can be found.

Figure 1: description of this figure

Figure 3: Derivative of the binding isotherm with 
respect to the strength of the binding regime. Lower 
contour plot represents the normalized 
concatenation of individual traces in the line plot.
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• The location of the max of the derivative plot 
in Figure 2 can be expressed as a function of 
the binding constant parameter (eq. 3).

• While eq. 3 represents the single best (most 
sensitive) solution in the titration, this 
derivation also leads to an optimal envelope 
of equivalents for the titration (eq. 4). 

ΧHG =
HG

H 0
𝐸 =

G 0

H 0
𝐵 = 𝐾𝑎 H 0

• The following derivative shows how much the 
data changes with the equilibrium constant.

Three Targeting Strategies

a) Control: 0 to 1.2 × ( 1 + 𝐶 +
4

𝐾 𝐻 0
) or 2 

equivalents (whichever is larger).

b) Envelope: all solutions in eq. 4 range.

c) Telescope: reserves 11 of 51 solutions to 
cover range outside of envelope.
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Figure 4: Sensitivity envelopes according to eq. 4. 
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Computational Validation

• Monte Carlo simulation: computer runs the 
data analysis procedure thousands of times.

• As the binding regime becomes stronger, 
uncertainty increases. 

• K[H]o cutoff: when σ(ΔGo) exceeds 1 kJ/mol. 
As the cutoff increases, accuracy increases.

• Table 1 shows that the telescope strategy is 
more effective than the standard “control” 
design in strong binding regimes. 
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Figure 5: Titrations generated by the targeting 
strategies for ΔG° = -10.0 kJ/mol, [H]0 = 0.1 M, C = 0.

Table 1: Monte Carlo K[H]o cutoff values for the two 
targeting strategies and the control.
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